

THE DATASHEET OF FDS4435BZ

MOSFET – P-Channel, POWERTRENCH®

-30 V, -8.8 A, 20 mΩ

Description

This P-Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance.

This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Features

- Max $R_{DS(on)} = 20 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -8.8 \text{ A}$
- Max $R_{DS(on)} = 35 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -6.7 \text{ A}$
- Extended V_{GSS} Range (-25 V) for Battery Applications
- HBM ESD Protection Level of ±3.8 kV Typical (Note 3)
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- This Device is Pb-Free and RoHS Compliant

Specifications

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

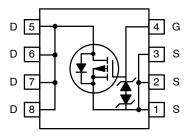
Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	-30	V
V _{GS}	Gate to Source Voltage	±25	V
I _D	Drain Current - Continuous T _A = 25°C (Note 1a) - Pulsed	-8.8 -50	А
P_{D}	Power Dissipation T _A = 25°C (Note 1a)	2.5	W
	Power Dissipation T _A = 25°C (Note 1b)	1.0	
E _{AS}	Single Pulse Avalanche Energy (Note 4)	24	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	25	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	

1


ON Semiconductor®

www.onsemi.com

SOIC8 CASE 751EB

ELECTRICAL CONNECTION

MARKING DIAGRAM

FDS4435BZ = Specific Device Code = Assembly Site Α = Wafer Lot Number YW = Assembly Start Week

ORDERING INFORMATION

Device	Package	Shipping _†
FDS4435BZ	SOIC8 (Pb-Free)	2,500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS			•		
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C		-21		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
N CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-1	-2.1	-3	V
ΔV _{GS(th)} / ΔΤ _J	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to $25^{\circ}C$		6		mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -10 V, I _D = -8.8 A		16	20 mΩ	$m\Omega$
		$V_{GS} = -4.5 \text{ V}, I_D = -6.7 \text{ A}$		26	35	
		V _{GS} = -10 V, I _D = -8.8 A, T _J = 125°C		22	28	
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -8.8 \text{ A}$		24		S
YNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{MHz}$		1385	1845	pF
C _{oss}	Output Capacitance			275	365	pF
C _{rss}	Reverse Transfer Capacitance			230	345	pF
Rg	Gate Resistance	f = 1MHz		4.5		Ω
WITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, I_D = -8.8 \text{ A}, V_{GS} = -10$		10	20	ns
t _r	Rise Time	$V, R_{GEN} = 6 \Omega$		6	12	ns
t _{d(off)}	Turn-Off Delay Time			30	48	ns
t _f	Fall Time	,		12	22	ns
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V to } -10 \text{ V}, V_{DD} = -15 \text{ V}, I_D = -8.8 \text{ A}$		28	40	nC
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V to } -5 \text{ V, } V_{DD} = -15 \text{ V,}$ $I_{D} = -8.8 \text{ A}$		16	23	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -15 \text{ V}, I_D = -8.8 \text{ A}$		5.2		nC
Q _{gd}	Gate to Drain "Miller" Charge			7.4		nC
RAIN-SOL	JRCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = -8.8A (Note 2)		-0.9	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -8.8 A, di/dt = 100 A/μs		29	44	ns
Q _{rr}	Reverse Recovery Charge			23	35	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 50°C/W when mounted on
 a 1 in² pad of 2 oz copper.

b. 125°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
- 4. Starting $T_J = 25^{\circ}C$, L = 1 mH, $I_{AS} = -7$ A, $V_{DD} = -30$ V, $V_{GS} = -10$ V.

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

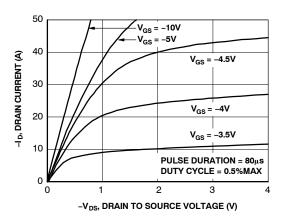


Figure 1. On-Region Characteristics

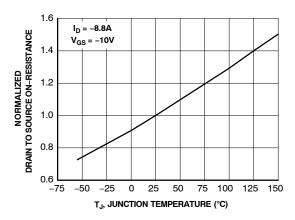


Figure 3. Normalized On–Resistance vs Junction Temperature

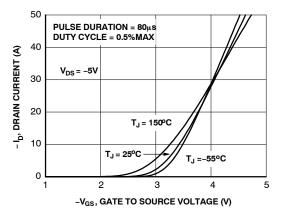


Figure 5. Transfer Characteristics

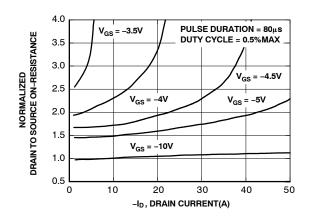


Figure 2. Normalized On–Resistance vs Drain Current and Gate Voltage

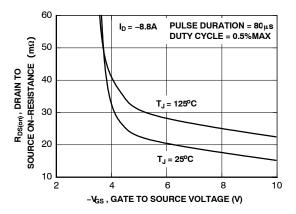


Figure 4. On–Resistance vs Gate to Source Voltage

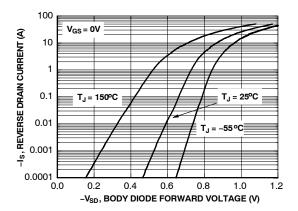


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

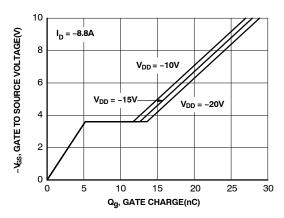


Figure 7. Gate Charge Characteristics

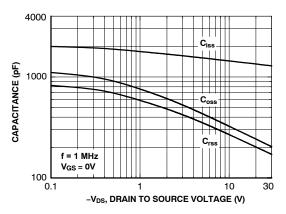


Figure 8. Capacitance vs Drain to Source Voltage

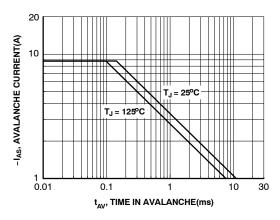


Figure 9. Unclamped Inductive Switching Capability

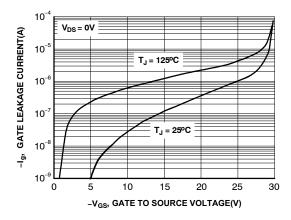


Figure 10. Gate Leakage Current vs Gate to Source Voltage

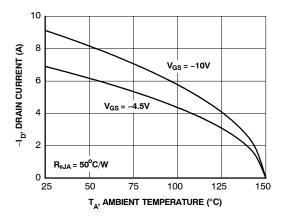


Figure 11. Maximum Continuous Drain Current vs
Ambient Temperature

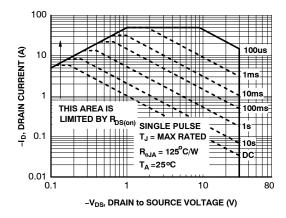


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

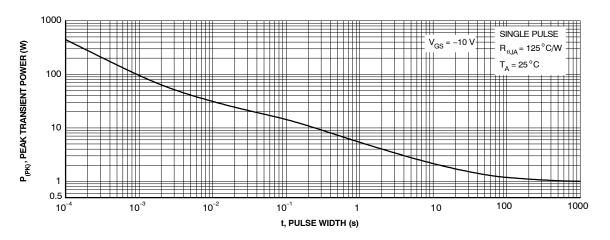
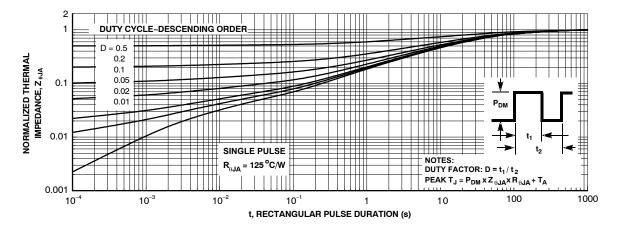
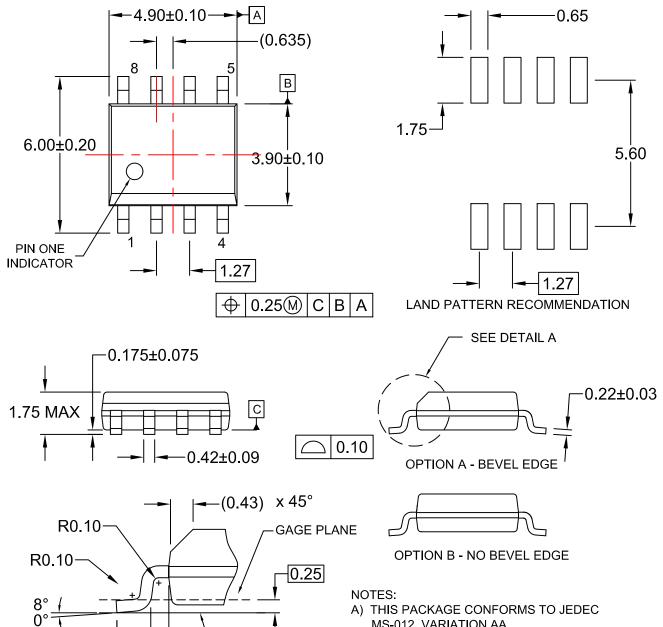


Figure 13. Single Pulse Maximum Power Dissipation




Figure 14. Junction To Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

0.65±0.25

SOIC8 CASE 751EB **ISSUE A**

DATE 24 AUG 2017

- MS-012, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M

DOCUMENT NUMBER:	98AON13735G	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	SOIC8	PAGE 1 OF 2

SEATING PLANE

(1.04)

DETAIL A SCALE: 2:1

DOCUMENT NUMBER: 98AON13735G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD M08A TO ON SEMICONDUCTOR. REQ. BY B. MARQUIS.	30 SEP 2016
Α	CORRECTED DIMENSIONAL ERROR IN DETAIL A. REQ. BY H. ALLEN.	24 AUG 2017

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. anising out of the application of use of any product of circuit, and specifically disclaims any and an inability, including without infiniation special, consequential of inclental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates. and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative